ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.09528
17
0
v1v2v3v4 (latest)

Discovering Explainable Latent Covariance Structure for Multiple Time Series

28 March 2017
Anh Tong
Jaesik Choi
    AI4TS
ArXiv (abs)PDFHTML
Abstract

Analyzing time series data is important to predict future events and changes in finance, manufacturing, and administrative decisions. Gaussian processes (GPs) solve regression and classification problems by choosing appropriate kernels capturing covariance structure of data. In time series analysis, GP based regression methods recently demonstrate competitive performance by decomposing temporal covariance structure. Such covariance structure decomposition allows exploiting shared parameters over a set of multiple but selected time series. In this paper, we handle multiple time series by placing an Indian Buffet Process (IBP) prior on the presence of shared kernels. We investigate the validity of model when infinite latent components are introduced. We also propose an improved search algorithm to find interpretable kernels among multiple time series along with comparison reports. Experiments are conducted on both synthetic data sets and real world data sets, showing promising results in term of structure discoveries and predictive performances.

View on arXiv
Comments on this paper