ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.02492
14
0

Metric Learning in Codebook Generation of Bag-of-Words for Person Re-identification

8 April 2017
Lu Tian
Shengjin Wang
    SSL
ArXivPDFHTML
Abstract

Person re-identification is generally divided into two part: first how to represent a pedestrian by discriminative visual descriptors and second how to compare them by suitable distance metrics. Conventional methods isolate these two parts, the first part usually unsupervised and the second part supervised. The Bag-of-Words (BoW) model is a widely used image representing descriptor in part one. Its codebook is simply generated by clustering visual features in Euclidian space. In this paper, we propose to use part two metric learning techniques in the codebook generation phase of BoW. In particular, the proposed codebook is clustered under Mahalanobis distance which is learned supervised. Extensive experiments prove that our proposed method is effective. With several low level features extracted on superpixel and fused together, our method outperforms state-of-the-art on person re-identification benchmarks including VIPeR, PRID450S, and Market1501.

View on arXiv
Comments on this paper