ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.05201
8
28

Stein Variational Adaptive Importance Sampling

18 April 2017
J. Han
Qiang Liu
ArXivPDFHTML
Abstract

We propose a novel adaptive importance sampling algorithm which incorporates Stein variational gradient decent algorithm (SVGD) with importance sampling (IS). Our algorithm leverages the nonparametric transforms in SVGD to iteratively decrease the KL divergence between our importance proposal and the target distribution. The advantages of this algorithm are twofold: first, our algorithm turns SVGD into a standard IS algorithm, allowing us to use standard diagnostic and analytic tools of IS to evaluate and interpret the results; second, we do not restrict the choice of our importance proposal to predefined distribution families like traditional (adaptive) IS methods. Empirical experiments demonstrate that our algorithm performs well on evaluating partition functions of restricted Boltzmann machines and testing likelihood of variational auto-encoders.

View on arXiv
Comments on this paper