A Flexible Framework for Hypothesis Testing in High-dimensions

Hypothesis testing in the linear regression model is a fundamental statistical problem. We consider linear regression in the high-dimensional regime where the number of parameters exceeds the number of samples () and assume that the high-dimensional parameters vector is sparse. We develop a general and flexible projection statistic for hypothesis testing in this model. Our framework encompasses testing whether the parameter lies in a convex cone, testing the signal strength, and testing arbitrary functionals of the parameter. We show that the proposed procedure controls the type I error under the standard assumption of , and also analyze the power of the procedure. Our numerical experiments confirms our theoretical findings and demonstrate that we control false positive rate (type I error) near the nominal level, and have high power. By duality between hypotheses testing and confidence intervals, the proposed framework can be used to obtain valid confidence intervals for various functionals of the model parameters. For linear functionals, the length of confidence intervals is shown to be minimax rate optimal.
View on arXiv