ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.08362
6
69

A New Type of Neurons for Machine Learning

26 April 2017
Fenglei Fan
W. Cong
Ge Wang
ArXivPDFHTML
Abstract

In machine learning, the use of an artificial neural network is the mainstream approach. Such a network consists of layers of neurons. These neurons are of the same type characterized by the two features: (1) an inner product of an input vector and a matching weighting vector of trainable parameters and (2) a nonlinear excitation function. Here we investigate the possibility of replacing the inner product with a quadratic function of the input vector, thereby upgrading the 1st order neuron to the 2nd order neuron, empowering individual neurons, and facilitating the optimization of neural networks. Also, numerical examples are provided to illustrate the feasibility and merits of the 2nd order neurons. Finally, further topics are discussed.

View on arXiv
Comments on this paper