ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.03260
25
3

Evidence for the size principle in semantic and perceptual domains

9 May 2017
Joshua C. Peterson
Thomas Griffiths
ArXiv (abs)PDFHTML
Abstract

Shepard's Universal Law of Generalization offered a compelling case for the first physics-like law in cognitive science that should hold for all intelligent agents in the universe. Shepard's account is based on a rational Bayesian model of generalization, providing an answer to the question of why such a law should emerge. Extending this account to explain how humans use multiple examples to make better generalizations requires an additional assumption, called the size principle: hypotheses that pick out fewer objects should make a larger contribution to generalization. The degree to which this principle warrants similarly law-like status is far from conclusive. Typically, evaluating this principle has not been straightforward, requiring additional assumptions. We present a new method for evaluating the size principle that is more direct, and apply this method to a diverse array of datasets. Our results provide support for the broad applicability of the size principle.

View on arXiv
Comments on this paper