ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.04153
22
31

Dynamic Compositional Neural Networks over Tree Structure

11 May 2017
Pengfei Liu
Xipeng Qiu
Xuanjing Huang
ArXivPDFHTML
Abstract

Tree-structured neural networks have proven to be effective in learning semantic representations by exploiting syntactic information. In spite of their success, most existing models suffer from the underfitting problem: they recursively use the same shared compositional function throughout the whole compositional process and lack expressive power due to inability to capture the richness of compositionality. In this paper, we address this issue by introducing the dynamic compositional neural networks over tree structure (DC-TreeNN), in which the compositional function is dynamically generated by a meta network. The role of meta-network is to capture the metaknowledge across the different compositional rules and formulate them. Experimental results on two typical tasks show the effectiveness of the proposed models.

View on arXiv
Comments on this paper