ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.06615
11
30

Adaptive Clustering through Semidefinite Programming

18 May 2017
Martin Royer
ArXivPDFHTML
Abstract

We analyze the clustering problem through a flexible probabilistic model that aims to identify an optimal partition on the sample X 1 , ..., X n. We perform exact clustering with high probability using a convex semidefinite estimator that interprets as a corrected, relaxed version of K-means. The estimator is analyzed through a non-asymptotic framework and showed to be optimal or near-optimal in recovering the partition. Furthermore, its performances are shown to be adaptive to the problem's effective dimension, as well as to K the unknown number of groups in this partition. We illustrate the method's performances in comparison to other classical clustering algorithms with numerical experiments on simulated data.

View on arXiv
Comments on this paper