ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08245
8
9

Enhanced Experience Replay Generation for Efficient Reinforcement Learning

23 May 2017
Vincent Huang
Tobias Ley
Martha Vlachou-Konchylaki
Wenfeng Hu
    OnRL
    GAN
    SyDa
ArXivPDFHTML
Abstract

Applying deep reinforcement learning (RL) on real systems suffers from slow data sampling. We propose an enhanced generative adversarial network (EGAN) to initialize an RL agent in order to achieve faster learning. The EGAN utilizes the relation between states and actions to enhance the quality of data samples generated by a GAN. Pre-training the agent with the EGAN shows a steeper learning curve with a 20% improvement of training time in the beginning of learning, compared to no pre-training, and an improvement compared to training with GAN by about 5% with smaller variations. For real time systems with sparse and slow data sampling the EGAN could be used to speed up the early phases of the training process.

View on arXiv
Comments on this paper