ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08488
19
7

Second-Order Word Embeddings from Nearest Neighbor Topological Features

23 May 2017
Denis R. Newman-Griffis
Eric Fosler-Lussier
ArXivPDFHTML
Abstract

We introduce second-order vector representations of words, induced from nearest neighborhood topological features in pre-trained contextual word embeddings. We then analyze the effects of using second-order embeddings as input features in two deep natural language processing models, for named entity recognition and recognizing textual entailment, as well as a linear model for paraphrase recognition. Surprisingly, we find that nearest neighbor information alone is sufficient to capture most of the performance benefits derived from using pre-trained word embeddings. Furthermore, second-order embeddings are able to handle highly heterogeneous data better than first-order representations, though at the cost of some specificity. Additionally, augmenting contextual embeddings with second-order information further improves model performance in some cases. Due to variance in the random initializations of word embeddings, utilizing nearest neighbor features from multiple first-order embedding samples can also contribute to downstream performance gains. Finally, we identify intriguing characteristics of second-order embedding spaces for further research, including much higher density and different semantic interpretations of cosine similarity.

View on arXiv
Comments on this paper