ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.10662
155
40
v1v2v3 (latest)

Boosting Functional Regression Models with FDboost

Journal of Statistical Software (JSS), 2017
30 May 2017
S. Brockhaus
David Rügamer
S. Greven
ArXiv (abs)PDFHTML
Abstract

The R add-on package FDboost is a flexible toolbox for the estimation of functional regression models by model-based boosting. It provides the possibility to fit regression models for scalar and functional response with effects of scalar as well as functional covariates, i.e., scalar-on-function, function-on-scalar and function-on-function regression models. In addition to mean regression, quantile regression models as well as generalized additive models for location scale and shape can be fitted with FDboost. Furthermore, boosting can be used in high-dimensional data settings with more covariates than observations. We provide a hands-on tutorial on model fitting and tuning, including the visualization of results. The methods for scalar-on-function regression are illustrated with spectrometric data of fossil fuels and those for functional response regression with a data set including bioelectrical signals for emotional episodes.

View on arXiv
Comments on this paper