ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.10750
25
2

Recurrent Estimation of Distributions

30 May 2017
Junier B. Oliva
Kumar Avinava Dubey
Barnabás Póczós
Eric Xing
J. Schneider
ArXivPDFHTML
Abstract

This paper presents the recurrent estimation of distributions (RED) for modeling real-valued data in a semiparametric fashion. RED models make two novel uses of recurrent neural networks (RNNs) for density estimation of general real-valued data. First, RNNs are used to transform input covariates into a latent space to better capture conditional dependencies in inputs. After, an RNN is used to compute the conditional distributions of the latent covariates. The resulting model is efficient to train, compute, and sample from, whilst producing normalized pdfs. The effectiveness of RED is shown via several real-world data experiments. Our results show that RED models achieve a lower held-out negative log-likelihood than other neural network approaches across multiple dataset sizes and dimensionalities. Further context of the efficacy of RED is provided by considering anomaly detection tasks, where we also observe better performance over alternative models.

View on arXiv
Comments on this paper