ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.10814
16
19

Character Composition Model with Convolutional Neural Networks for Dependency Parsing on Morphologically Rich Languages

30 May 2017
Xiang Yu
Ngoc Thang Vu
ArXivPDFHTML
Abstract

We present a transition-based dependency parser that uses a convolutional neural network to compose word representations from characters. The character composition model shows great improvement over the word-lookup model, especially for parsing agglutinative languages. These improvements are even better than using pre-trained word embeddings from extra data. On the SPMRL data sets, our system outperforms the previous best greedy parser (Ballesteros et al., 2015) by a margin of 3% on average.

View on arXiv
Comments on this paper