ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.02582
30
226

Clustering with t-SNE, provably

8 June 2017
G. Linderman
Stefan Steinerberger
ArXivPDFHTML
Abstract

t-distributed Stochastic Neighborhood Embedding (t-SNE), a clustering and visualization method proposed by van der Maaten & Hinton in 2008, has rapidly become a standard tool in a number of natural sciences. Despite its overwhelming success, there is a distinct lack of mathematical foundations and the inner workings of the algorithm are not well understood. The purpose of this paper is to prove that t-SNE is able to recover well-separated clusters; more precisely, we prove that t-SNE in the `early exaggeration' phase, an optimization technique proposed by van der Maaten & Hinton (2008) and van der Maaten (2014), can be rigorously analyzed. As a byproduct, the proof suggests novel ways for setting the exaggeration parameter α\alphaα and step size hhh. Numerical examples illustrate the effectiveness of these rules: in particular, the quality of embedding of topological structures (e.g. the swiss roll) improves. We also discuss a connection to spectral clustering methods.

View on arXiv
Comments on this paper