ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.03499
19
4

SU-RUG at the CoNLL-SIGMORPHON 2017 shared task: Morphological Inflection with Attentional Sequence-to-Sequence Models

12 June 2017
Robert Östling
Johannes Bjerva
ArXivPDFHTML
Abstract

This paper describes the Stockholm University/University of Groningen (SU-RUG) system for the SIGMORPHON 2017 shared task on morphological inflection. Our system is based on an attentional sequence-to-sequence neural network model using Long Short-Term Memory (LSTM) cells, with joint training of morphological inflection and the inverse transformation, i.e. lemmatization and morphological analysis. Our system outperforms the baseline with a large margin, and our submission ranks as the 4th best team for the track we participate in (task 1, high-resource).

View on arXiv
Comments on this paper