ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.03595
32
62
v1v2 (latest)

Context encoding enables machine learning-based quantitative photoacoustics

12 June 2017
Thomas Kirchner
J. Gröhl
Lena Maier-Hein
ArXiv (abs)PDFHTML
Abstract

Real-time monitoring of functional tissue parameters, such as local blood oxygenation, based on optical imaging could provide groundbreaking advances in the diagnosis and interventional therapy of various diseases. While photoacoustic (PA) imaging is a novel modality with great potential to measure optical absorption deep inside tissue, quantification of the measurements remains a major challenge. In this paper, we introduce the first machine learning based approach to quantitative PA imaging (qPAI), which relies on learning the fluence in a voxel to deduce the corresponding optical absorption. The method encodes relevant information of the measured signal and the characteristics of the imaging system in voxel-based feature vectors, which allow the generation of thousands of training samples from a single simulated PA image. Comprehensive in silico experiments suggest that context encoding (CE)-qPAI enables highly accurate and robust quantification of the local fluence and thereby the optical absorption from PA images.

View on arXiv
Comments on this paper