ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.06941
42
49
v1v2v3 (latest)

Concept Drift and Anomaly Detection in Graph Streams

21 June 2017
Daniele Zambon
Cesare Alippi
L. Livi
ArXiv (abs)PDFHTML
Abstract

Graph representations offer powerful and intuitive ways to describe data in a multitude of application domains. Here, we consider stochastic processes generating graphs and propose a methodology for detecting changes in stationarity of such processes. The methodology is general and considers a process generating attributed graphs with a variable number of vertices/edges, without the need to assume one-to-one correspondence between vertices at different time steps. The methodology acts by embedding every graph of the stream into a vector domain, where a conventional multivariate change detection procedure can be easily applied. We ground the soundness of our proposal by proving several theoretical results. In addition, we provide a specific implementation of the methodology and evaluate its effectiveness on several detection problems involving attributed graphs representing biological molecules and drawings. Experimental results are contrasted with respect to suitable baseline methods, demonstrating the effectiveness of our approach.

View on arXiv
Comments on this paper