ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.07001
19
12

Improved Optimization of Finite Sums with Minibatch Stochastic Variance Reduced Proximal Iterations

21 June 2017
Jialei Wang
Tong Zhang
ArXivPDFHTML
Abstract

We present novel minibatch stochastic optimization methods for empirical risk minimization problems, the methods efficiently leverage variance reduced first-order and sub-sampled higher-order information to accelerate the convergence speed. For quadratic objectives, we prove improved iteration complexity over state-of-the-art under reasonable assumptions. We also provide empirical evidence of the advantages of our method compared to existing approaches in the literature.

View on arXiv
Comments on this paper