ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.07094
84
304
v1v2 (latest)

Constrained Bayesian Optimization with Noisy Experiments

21 June 2017
Benjamin Letham
Brian Karrer
Guilherme Ottoni
E. Bakshy
ArXiv (abs)PDFHTML
Abstract

Randomized experiments are the gold standard for evaluating the effects of changes to real-world systems, including Internet services. Data in these tests may be difficult to collect and outcomes may have high variance, resulting in potentially large measurement error. Bayesian optimization is a promising technique for optimizing multiple continuous parameters for field experiments, but existing approaches degrade in performance when the noise level is high. We derive an exact expression for expected improvement under greedy batch optimization with noisy observations and noisy constraints, and develop a quasi-Monte Carlo approximation that allows it to be efficiently optimized. Experiments with synthetic functions show that optimization performance on noisy, constrained problems outperforms existing methods. We further demonstrate the effectiveness of the method with two real experiments conducted at Facebook: optimizing a production ranking system, and optimizing web server compiler flags.

View on arXiv
Comments on this paper