ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.07351
82
359

An approach to reachability analysis for feed-forward ReLU neural networks

22 June 2017
A. Lomuscio
Lalit Maganti
ArXiv (abs)PDFHTML
Abstract

We study the reachability problem for systems implemented as feed-forward neural networks whose activation function is implemented via ReLU functions. We draw a correspondence between establishing whether some arbitrary output can ever be outputed by a neural system and linear problems characterising a neural system of interest. We present a methodology to solve cases of practical interest by means of a state-of-the-art linear programs solver. We evaluate the technique presented by discussing the experimental results obtained by analysing reachability properties for a number of benchmarks in the literature.

View on arXiv
Comments on this paper