ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.07518
9
34

Neural Machine Translation with Gumbel-Greedy Decoding

22 June 2017
Jiatao Gu
Daniel Jiwoong Im
V. Li
ArXivPDFHTML
Abstract

Previous neural machine translation models used some heuristic search algorithms (e.g., beam search) in order to avoid solving the maximum a posteriori problem over translation sentences at test time. In this paper, we propose the Gumbel-Greedy Decoding which trains a generative network to predict translation under a trained model. We solve such a problem using the Gumbel-Softmax reparameterization, which makes our generative network differentiable and trainable through standard stochastic gradient methods. We empirically demonstrate that our proposed model is effective for generating sequences of discrete words.

View on arXiv
Comments on this paper