ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.09278
22
4
v1v2 (latest)

Learning Knowledge Graph Embeddings with Type Regularizer

28 June 2017
Bhushan Kotnis
Vivi Nastase
    NAI
ArXiv (abs)PDFHTML
Abstract

Learning relations based on evidence from knowledge bases relies on processing the available relation instances. Many relations, however, have clear domain and range, which we hypothesize could help learn a better, more generalizing, model. We include such information in the RESCAL model in the form of a regularization factor added to the loss function that takes into account the types (categories) of the entities that appear as arguments to relations in the knowledge base. We note increased performance compared to the baseline model in terms of mean reciprocal rank and hits@N, N = 1, 3, 10. Furthermore, we discover scenarios that significantly impact the effectiveness of the type regularizer.

View on arXiv
Comments on this paper