ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.00415
16
143

Dual Supervised Learning

3 July 2017
Yingce Xia
Tao Qin
Wei-neng Chen
Jiang Bian
Nenghai Yu
Tie-Yan Liu
    SSL
ArXivPDFHTML
Abstract

Many supervised learning tasks are emerged in dual forms, e.g., English-to-French translation vs. French-to-English translation, speech recognition vs. text to speech, and image classification vs. image generation. Two dual tasks have intrinsic connections with each other due to the probabilistic correlation between their models. This connection is, however, not effectively utilized today, since people usually train the models of two dual tasks separately and independently. In this work, we propose training the models of two dual tasks simultaneously, and explicitly exploiting the probabilistic correlation between them to regularize the training process. For ease of reference, we call the proposed approach \emph{dual supervised learning}. We demonstrate that dual supervised learning can improve the practical performances of both tasks, for various applications including machine translation, image processing, and sentiment analysis.

View on arXiv
Comments on this paper