ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.03010
98
27

Sparse inference of the drift of a high-dimensional Ornstein-Uhlenbeck process

10 July 2017
Stéphane Gaïffas
Gustaw Matulewicz
ArXiv (abs)PDFHTML
Abstract

Given the observation of a high-dimensional Ornstein-Uhlenbeck (OU) process in continuous time, we proceed to the inference of the drift parameter under a row-sparsity assumption. Towards that aim, we consider the negative log-likelihood of the process, penalized by an ℓ1\ell^1ℓ1-penalization (Lasso and Adaptive Lasso). We provide both non-asymptotic and asymptotic results for this procedure, by means of a sharp oracle inequality, and a limit theorem in the long-time asymptotics, including asymptotic consistency for variable selection. As a by-product, we point out the fact that for the Ornstein-Uhlenbeck process, one does not need an assumption of restricted eigenvalue type in order to derive fast rates for the Lasso, while it is well-known to be mandatory for linear regression for instance. Numerical results illustrate the benefits of this penalized procedure compared to standard maximum likelihood approaches both on simulations and real-world financial data.

View on arXiv
Comments on this paper