ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.02183
66
22
v1v2v3 (latest)

Multiresolution Kernel Approximation for Gaussian Process Regression

7 August 2017
Yi Ding
Risi Kondor
Jonathan Eskreis-Winkler
ArXiv (abs)PDFHTML
Abstract

Gaussian process regression generally does not scale to beyond a few thousands data points without applying some sort of kernel approximation method. Most approximations focus on the high eigenvalue part of the spectrum of the kernel matrix, KKK, which leads to bad performance when the length scale of the kernel is small. In this paper we introduce Multiresolution Kernel Approximation (MKA), the first true broad bandwidth kernel approximation algorithm. Important points about MKA are that it is memory efficient, and it is a direct method, which means that it also makes it easy to approximate K−1K^{-1}K−1 and det(K)\mathop{\textrm{det}}(K)det(K).

View on arXiv
Comments on this paper