ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.03111
11
31

Modality-bridge Transfer Learning for Medical Image Classification

10 August 2017
Hak Gu Kim
Yeoreum Choi
Yong Man Ro
    MedIm
ArXivPDFHTML
Abstract

This paper presents a new approach of transfer learning-based medical image classification to mitigate insufficient labeled data problem in medical domain. Instead of direct transfer learning from source to small number of labeled target data, we propose a modality-bridge transfer learning which employs the bridge database in the same medical imaging acquisition modality as target database. By learning the projection function from source to bridge and from bridge to target, the domain difference between source (e.g., natural images) and target (e.g., X-ray images) can be mitigated. Experimental results show that the proposed method can achieve a high classification performance even for a small number of labeled target medical images, compared to various transfer learning approaches.

View on arXiv
Comments on this paper