ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.06004
52
14
v1v2v3 (latest)

Boltzmann machines for time-series

20 August 2017
Takayuki Osogami
ArXiv (abs)PDFHTML
Abstract

We review Boltzmann machines extended for time-series. These models often have recurrent structure, and back propagration through time (BPTT) is used to learn their parameters. The per-step computational complexity of BPTT in online learning, however, grows linearly with respect to the length of preceding time-series (i.e., learning rule is not local in time), which limits the applicability of BPTT in online learning. We then review dynamic Boltzmann machines (DyBMs), whose learning rule is local in time. DyBM's learning rule relates to spike-timing dependent plasticity (STDP), which has been postulated and experimentally confirmed for biological neural networks.

View on arXiv
Comments on this paper