ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.06008
23
14

Boltzmann machines and energy-based models

20 August 2017
Takayuki Osogami
ArXivPDFHTML
Abstract

We review Boltzmann machines and energy-based models. A Boltzmann machine defines a probability distribution over binary-valued patterns. One can learn parameters of a Boltzmann machine via gradient based approaches in a way that log likelihood of data is increased. The gradient and Hessian of a Boltzmann machine admit beautiful mathematical representations, although computing them is in general intractable. This intractability motivates approximate methods, including Gibbs sampler and contrastive divergence, and tractable alternatives, namely energy-based models.

View on arXiv
Comments on this paper