101
74

Controlled Sequential Monte Carlo

George Deligiannidis
Abstract

Sequential Monte Carlo methods, also known as particle methods, are a popular set of techniques to approximate high-dimensional probability distributions and their normalizing constants. They have found numerous applications in statistics and related fields as they can be applied to perform state estimation for non-linear non-Gaussian state space models and Bayesian inference for complex static models. Like many Monte Carlo sampling schemes, they rely on proposal distributions which have a crucial impact on their performance. We introduce here a class of controlled sequential Monte Carlo algorithms, where the proposal distributions are determined by approximating the solution to an associated optimal control problem using an iterative scheme. We provide theoretical analysis of our proposed methodology and demonstrate significant gains over state-of-the-art methods at a fixed computational complexity on a variety of applications.

View on arXiv
Comments on this paper