ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.01233
43
3
v1v2v3v4v5v6v7v8v9 (latest)

Linear Optimal Low Rank Projection for High-Dimensional Multi-class Data

5 September 2017
Joshua T. Vogelstein
Eric W. Bridgeford
M. Tang
Da Zheng
Christopher Douville
ArXiv (abs)PDFHTML
Abstract

Classification of individual samples into one or more categories is critical to modern scientific inquiry. Most modern datasets, such as those used in genetic analysis or imaging, include numerous features, such as genes or pixels. Principal Components Analysis (PCA) is now generally used to find low-dimensional representations of such features for further analysis. However, PCA ignores class label information, thereby discarding data that could substantially improve downstream classification performance. We here describe an approach called "Linear Optimal Low-rank"' projection (LOL), which extends PCA by incorporating the class labels. Using theory and synthetic data, we show that LOL leads to a better representation of the data for subsequent classification than PCA while adding negligible computational cost. Experimentally we demonstrate that LOL substantially outperforms PCA in differentiating cancer patients from healthy controls using genetic data and in differentiating gender from magnetic resonance imaging data incorporating >500 million features and 400 gigabytes of data. LOL allows the solution of previous intractable problems yet requires only a few minutes to run on a single desktop computer.

View on arXiv
Comments on this paper