ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.03665
28
26

Small-footprint Keyword Spotting Using Deep Neural Network and Connectionist Temporal Classifier

12 September 2017
Zhiming Wang
Xiaolong Li
Jun Zhou
ArXivPDFHTML
Abstract

Mainly for the sake of solving the lack of keyword-specific data, we propose one Keyword Spotting (KWS) system using Deep Neural Network (DNN) and Connectionist Temporal Classifier (CTC) on power-constrained small-footprint mobile devices, taking full advantage of general corpus from continuous speech recognition which is of great amount. DNN is to directly predict the posterior of phoneme units of any personally customized key-phrase, and CTC to produce a confidence score of the given phoneme sequence as responsive decision-making mechanism. The CTC-KWS has competitive performance in comparison with purely DNN based keyword specific KWS, but not increasing any computational complexity.

View on arXiv
Comments on this paper