ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.04196
11
81

Particle Filters and Data Assimilation

13 September 2017
Paul Fearnhead
H. Kunsch
ArXivPDFHTML
Abstract

State-space models can be used to incorporate subject knowledge on the underlying dynamics of a time series by the introduction of a latent Markov state-process. A user can specify the dynamics of this process together with how the state relates to partial and noisy observations that have been made. Inference and prediction then involves solving a challenging inverse problem: calculating the conditional distribution of quantities of interest given the observations. This article reviews Monte Carlo algorithms for solving this inverse problem, covering methods based on the particle filter and the ensemble Kalman filter. We discuss the challenges posed by models with high-dimensional states, joint estimation of parameters and the state, and inference for the history of the state process. We also point out some potential new developments which will be important for tackling cutting-edge filtering applications.

View on arXiv
Comments on this paper