ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.08011
11
25

Long Short-Term Memory for Japanese Word Segmentation

23 September 2017
Yoshiaki Kitagawa
Mamoru Komachi
ArXivPDFHTML
Abstract

This study presents a Long Short-Term Memory (LSTM) neural network approach to Japanese word segmentation (JWS). Previous studies on Chinese word segmentation (CWS) succeeded in using recurrent neural networks such as LSTM and gated recurrent units (GRU). However, in contrast to Chinese, Japanese includes several character types, such as hiragana, katakana, and kanji, that produce orthographic variations and increase the difficulty of word segmentation. Additionally, it is important for JWS tasks to consider a global context, and yet traditional JWS approaches rely on local features. In order to address this problem, this study proposes employing an LSTM-based approach to JWS. The experimental results indicate that the proposed model achieves state-of-the-art accuracy with respect to various Japanese corpora.

View on arXiv
Comments on this paper