ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.08519
34
12
v1v2 (latest)

Enhanced Quantum Synchronization via Quantum Machine Learning

25 September 2017
F. A. Cárdenas-López
M. Sanz
J. C. Retamal
Enrique Solano
ArXiv (abs)PDFHTML
Abstract

We study the quantum synchronization between a pair of two-level systems inside two coupledcavities. Using a digital-analog decomposition of the master equation that rules the system dynamics, we show that this approach leads to quantum synchronization between both two-level systems. Moreover, we can identify in this digital-analog block decomposition the fundamental elements of a quantum machine learning protocol, in which the agent and the environment (learning units) interact through a mediating system, namely, the register. If we can additionally equip this algorithm with a classical feedback mechanism, which consists of projective measurements in the register, reinitialization of the register state and local conditional operations on the agent and register subspace, a powerful and flexible quantum machine learning protocol emerges. Indeed, numerical simulations show that this protocol enhances the synchronization process, even when every subsystem experience different loss/decoherence mechanisms, and give us flexibility to choose the synchronization state. Finally, we propose an implementation based on current technologies in superconducting circuits.

View on arXiv
Comments on this paper