ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.08527
40
8

Multi-view pose estimation with mixtures-of-parts and adaptive viewpoint selection

25 September 2017
Emre Dogan
Gonen Eren
Christian Wolf
Eric Lombardi
A. Baskurt
ArXiv (abs)PDFHTML
Abstract

We propose a new method for human pose estimation which leverages information from multiple views to impose a strong prior on articulated pose. The novelty of the method concerns the types of coherence modelled. Consistency is maximised over the different views through different terms modelling classical geometric information (coherence of the resulting poses) as well as appearance information which is modelled as latent variables in the global energy function. Moreover, adequacy of each view is assessed and their contributions are adjusted accordingly. Experiments on the HumanEva and UMPM datasets show that the proposed method significantly decreases the estimation error compared to single-view results.

View on arXiv
Comments on this paper