ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.02159
41
12

Preferential Attachment and Vertex Arrival Times

5 October 2017
Benjamin Bloem-Reddy
Peter Orbanz
ArXiv (abs)PDFHTML
Abstract

We study preferential attachment mechanisms in random graphs that are parameterized by (i) a constant bias affecting the degree-biased distribution on the vertex set and (ii) the distribution of times at which new vertices are created by the model. The class of random graphs so defined admits a representation theorem reminiscent of residual allocation, or "stick-breaking" schemes. We characterize how the vertex arrival times affect the asymptotic degree distribution, and relate the latter to neutral-to-the-left processes. Our random graphs generate edges "one end at a time", which sets up a one-to-one correspondence between random graphs and random partitions of natural numbers; via this map, our representation induces a result on (not necessarily exchangeable) random partitions that generalizes a theorem of Griffiths and Span\ó. A number of examples clarify how the class intersects with several known random graph models.

View on arXiv
Comments on this paper