ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.05094
12
9

Learning Phrase Embeddings from Paraphrases with GRUs

13 October 2017
Zhihao Zhou
Lifu Huang
Heng Ji
    NAI
ArXivPDFHTML
Abstract

Learning phrase representations has been widely explored in many Natural Language Processing (NLP) tasks (e.g., Sentiment Analysis, Machine Translation) and has shown promising improvements. Previous studies either learn non-compositional phrase representations with general word embedding learning techniques or learn compositional phrase representations based on syntactic structures, which either require huge amounts of human annotations or cannot be easily generalized to all phrases. In this work, we propose to take advantage of large-scaled paraphrase database and present a pair-wise gated recurrent units (pairwise-GRU) framework to generate compositional phrase representations. Our framework can be re-used to generate representations for any phrases. Experimental results show that our framework achieves state-of-the-art results on several phrase similarity tasks.

View on arXiv
Comments on this paper