ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.06975
25
65

Consequentialist conditional cooperation in social dilemmas with imperfect information

19 October 2017
A. Peysakhovich
Adam Lerer
ArXivPDFHTML
Abstract

Social dilemmas, where mutual cooperation can lead to high payoffs but participants face incentives to cheat, are ubiquitous in multi-agent interaction. We wish to construct agents that cooperate with pure cooperators, avoid exploitation by pure defectors, and incentivize cooperation from the rest. However, often the actions taken by a partner are (partially) unobserved or the consequences of individual actions are hard to predict. We show that in a large class of games good strategies can be constructed by conditioning one's behavior solely on outcomes (ie. one's past rewards). We call this consequentialist conditional cooperation. We show how to construct such strategies using deep reinforcement learning techniques and demonstrate, both analytically and experimentally, that they are effective in social dilemmas beyond simple matrix games. We also show the limitations of relying purely on consequences and discuss the need for understanding both the consequences of and the intentions behind an action.

View on arXiv
Comments on this paper