ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.07954
45
24
v1v2v3 (latest)

A Novel Bayesian Cluster Enumeration Criterion for Unsupervised Learning

22 October 2017
Freweyni K. Teklehaymanot
Michael Muma
A. Zoubir
ArXiv (abs)PDFHTML
Abstract

We derive a new Bayesian Information Criterion (BIC) from first principles by formulating the problem of estimating the number of clusters in an observed data set as maximization of the posterior probability of the candidate models. Given that some mild assumptions are satisfied, we provide a general BIC expression for a broad class of data distributions. This serves as an important milestone when deriving the BIC for specific data distributions. Along this line, we provide a closed-form BIC expression for multivariate Gaussian distributed observations. We show that incorporating data structure of the clustering problem into the derivation of the BIC results in an expression whose penalty term is different from that of the original BIC. We propose a two-step cluster enumeration algorithm. First, a model-based unsupervised learning algorithm partitions the data according to a given set of candidate models. Subsequently, the optimal cluster number is determined as the one associated to the model for which the proposed BIC is maximal. The performance of the proposed criterion is tested using synthetic and real data sets. Despite the fact that the original BIC is a generic criterion which does not include information about the specific model selection problem at hand, it has been widely used in the literature to estimate the number of clusters in an observed data set. We, therefore, consider it as a benchmark comparison. Simulation results show that our proposed criterion outperforms the existing cluster enumeration methods that are based on the original BIC.

View on arXiv
Comments on this paper