163
v1v2 (latest)

Adversarial Deep Structured Nets for Mass Segmentation from Mammograms

IEEE International Symposium on Biomedical Imaging (ISBI), 2017
Abstract

Mass segmentation provides effective morphological features which are important for mass diagnosis. In this work, we propose a novel end-to-end network for mammographic mass segmentation which employs a fully convolutional network (FCN) to model a potential function, followed by a CRF to perform structured learning. Because the mass distribution varies greatly with pixel position, the FCN is combined with a position priori. Further, we employ adversarial training to eliminate over-fitting due to the small sizes of mammogram datasets. Multi-scale FCN is employed to improve the segmentation performance. Experimental results on two public datasets, INbreast and DDSM-BCRP, demonstrate that our end-to-end network achieves better performance than state-of-the-art approaches. \footnote{https://github.com/wentaozhu/adversarial-deep-structural-networks.git}

View on arXiv
Comments on this paper