106

Rotational Unit of Memory

International Conference on Learning Representations (ICLR), 2017
Abstract

The concepts of unitary evolution matrices and associative memory have boosted the field of Recurrent Neural Networks (RNN) to state-of-the-art performance in a variety of sequential tasks. However, RNN still have a limited capacity to manipulate long-term memory. To bypass this weakness the most successful applications of RNN use external techniques such as attention mechanisms. In this paper we propose a novel RNN model that unifies the state-of-the-art approaches: Rotational Unit of Memory (RUM). The core of RUM is its rotational operation, which is, naturally, a unitary matrix, providing architectures with the power to learn long-term dependencies by overcoming the vanishing and exploding gradients problem. Moreover, the rotational unit also serves as associative memory. We evaluate our model on synthetic memorization, question answering and language modeling tasks. RUM learns the Copying Memory task completely and improves the state-of-the-art result in the Recall task. RUM's performance in the bAbI Question Answering task is comparable to that of models with attention mechanism. We also improve the state-of-the-art result to 1.189 bits-per-character (BPC) loss in the Character Level Penn Treebank (PTB) task, which is to signify the applications of RUM to real-world sequential data. The universality of our construction, at the core of RNN, establishes RUM as a promising approach to language modeling, speech recognition and machine translation.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.