ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10416
35
2

Cox's proportional hazards model with a high-dimensional and sparse regression parameter

28 October 2017
Kou Fujimori
ArXiv (abs)PDFHTML
Abstract

This paper deals with the proportional hazards model proposed by D. R. Cox in a high-dimensional and sparse setting for a regression parameter. To estimate the regression parameter, the Dantzig selector is applied. The variable selection consistency of the Dantzig selector for the model will be proved. This property enables us to reduce the dimension of the parameter and to construct asymptotically normal estimators for the regression parameter and the cumulative baseline hazard function.

View on arXiv
Comments on this paper