ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00331
78
106
v1v2v3 (latest)

Semantic Structure and Interpretability of Word Embeddings

1 November 2017
Lutfi Kerem Senel
Ihsan Utlu
Veysel Yücesoy
Aykut Koç
Tolga Çukur
ArXiv (abs)PDFHTML
Abstract

Dense word embeddings, which encode semantic meanings of words to low dimensional vector spaces have become very popular in natural language processing (NLP) research due to their state-of-the-art performances in many NLP tasks. Word embeddings are substantially successful in capturing semantic relations among words, so a meaningful semantic structure must be present in the respective vector spaces. However, in many cases, this semantic structure is broadly and heterogeneously distributed across the embedding dimensions, which makes interpretation a big challenge. In this study, we propose a statistical method to uncover the latent semantic structure in the dense word embeddings. To perform our analysis we introduce a new dataset (SEMCAT) that contains more than 6500 words semantically grouped under 110 categories. We further propose a method to quantify the interpretability of the word embeddings; the proposed method is a practical alternative to the classical word intrusion test that requires human intervention.

View on arXiv
Comments on this paper