ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.02131
22
11

Characterizing Sparse Connectivity Patterns in Neural Networks

6 November 2017
Sourya Dey
Kuan-Wen Huang
P. Beerel
K. Chugg
ArXivPDFHTML
Abstract

We propose a novel way of reducing the number of parameters in the storage-hungry fully connected layers of a neural network by using pre-defined sparsity, where the majority of connections are absent prior to starting training. Our results indicate that convolutional neural networks can operate without any loss of accuracy at less than half percent classification layer connection density, or less than 5 percent overall network connection density. We also investigate the effects of pre-defining the sparsity of networks with only fully connected layers. Based on our sparsifying technique, we introduce the `scatter' metric to characterize the quality of a particular connection pattern. As proof of concept, we show results on CIFAR, MNIST and a new dataset on classifying Morse code symbols, which highlights some interesting trends and limits of sparse connection patterns.

View on arXiv
Comments on this paper