ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.02305
26
1
v1v2 (latest)

Finding Heavily-Weighted Features in Data Streams

7 November 2017
Kai Sheng Tai
Vatsal Sharan
Peter Bailis
Gregory Valiant
ArXiv (abs)PDFHTML
Abstract

We introduce a new sub-linear space data structure---the Weight-Median Sketch---that captures the most heavily weighted features in linear classifiers trained over data streams. This enables memory-limited execution of several statistical analyses over streams, including online feature selection, streaming data explanation, relative deltoid detection, and streaming estimation of pointwise mutual information. In contrast with related sketches that capture the most commonly occurring features (or items) in a data stream, the Weight-Median Sketch captures the features that are most discriminative of one stream (or class) compared to another. The Weight-Median sketch adopts the core data structure used in the Count-Sketch, but, instead of sketching counts, it captures sketched gradient updates to the model parameters. We provide a theoretical analysis of this approach that establishes recovery guarantees in the online learning setting, and demonstrate substantial empirical improvements in accuracy-memory trade-offs over alternatives, including count-based sketches and feature hashing.

View on arXiv
Comments on this paper