ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.04994
85
25
v1v2v3 (latest)

Prediction Under Uncertainty with Error-Encoding Networks

14 November 2017
Mikael Henaff
Jiaqi Zhao
Yann LeCun
    UQCV
ArXiv (abs)PDFHTML
Abstract

In this work we introduce a new framework for performing temporal predictions in the presence of uncertainty. It is based on a simple idea of disentangling components of the future state which are predictable from those which are inherently unpredictable, and encoding the unpredictable components into a low-dimensional latent variable which is fed into a forward model. Our method uses a supervised training objective which is fast and easy to train. We evaluate it in the context of video prediction on multiple datasets and show that it is able to consistently generate diverse predictions without the need for alternating minimization over a latent space or adversarial training.

View on arXiv
Comments on this paper