ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.05217
29
306

Controllable Abstractive Summarization

14 November 2017
Angela Fan
David Grangier
Michael Auli
ArXivPDFHTML
Abstract

Current models for document summarization disregard user preferences such as the desired length, style, the entities that the user might be interested in, or how much of the document the user has already read. We present a neural summarization model with a simple but effective mechanism to enable users to specify these high level attributes in order to control the shape of the final summaries to better suit their needs. With user input, our system can produce high quality summaries that follow user preferences. Without user input, we set the control variables automatically. On the full text CNN-Dailymail dataset, we outperform state of the art abstractive systems (both in terms of F1-ROUGE1 40.38 vs. 39.53 and human evaluation).

View on arXiv
Comments on this paper