ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.07638
22
35

Towards a More Reliable Privacy-preserving Recommender System

21 November 2017
Jiahui Jiang
Cheng-Te Li
Shou-de Lin
ArXivPDFHTML
Abstract

This paper proposes a privacy-preserving distributed recommendation framework, Secure Distributed Collaborative Filtering (SDCF), to preserve the privacy of value, model and existence altogether. That says, not only the ratings from the users to the items, but also the existence of the ratings as well as the learned recommendation model are kept private in our framework. Our solution relies on a distributed client-server architecture and a two-stage Randomized Response algorithm, along with an implementation on the popular recommendation model, Matrix Factorization (MF). We further prove SDCF to meet the guarantee of Differential Privacy so that clients are allowed to specify arbitrary privacy levels. Experiments conducted on numerical rating prediction and one-class rating action prediction exhibit that SDCF does not sacrifice too much accuracy for privacy.

View on arXiv
Comments on this paper