22
136

Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap

Abstract

To identify the estimand in missing data problems and observational studies, it is common to base the statistical estimation on the "missing at random" and "no unmeasured confounder" assumptions. However, these assumptions are unverifiable using empirical data and pose serious threats to the validity of the qualitative conclusions of the statistical inference. A sensitivity analysis asks how the conclusions may change if the unverifiable assumptions are violated to a certain degree. In this paper we consider a marginal sensitivity model which is a natural extension of Rosenbaum's sensitivity model that is widely used for matched observational studies. We aim to construct confidence intervals based on inverse probability weighting estimators, such that asymptotically the intervals have at least nominal coverage of the estimand whenever the data generating distribution is in the collection of marginal sensitivity models. We use a percentile bootstrap and a generalized minimax/maximin inequality to transform this intractable problem to a linear fractional programming problem, which can be solved very efficiently. We illustrate our method using a real dataset to estimate the causal effect of fish consumption on blood mercury level.

View on arXiv
Comments on this paper