ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.11423
52
32
v1v2 (latest)

On reducing the communication cost of the diffusion LMS algorithm

30 November 2017
Ibrahim El Khalil Harrane
Rémi Flamary
C. Richard
ArXiv (abs)PDFHTML
Abstract

The rise of digital and mobile communications has recently made the world more connected and networked, resulting in an unprecedented volume of data flowing between sources, data centers, or processes. While these data may be processed in a centralized manner, it is often more suitable to consider distributed strategies such as diffusion as they are scalable and can handle large amounts of data by distributing tasks over networked agents. Although it is relatively simple to implement diffusion strategies over a cluster, it appears to be challenging to deploy them in an ad-hoc network with limited energy budget for communication. In this paper, we introduce a diffusion LMS strategy that significantly reduces communication costs without compromising the performance. Then, we analyze the proposed algorithm in the mean and mean-square sense. Next, we conduct numerical experiments to confirm the theoretical findings. Finally, we perform large scale simulations to test the algorithm efficiency in a scenario where energy is limited.

View on arXiv
Comments on this paper